Envelope Variation as a Primary Determinant of Lentiviral Vaccine Efficacy

Jodi K. Craigo, Ph.D.
Res. Assistant Professor, Center for Vaccine Research
University of Pittsburgh School of Medicine

The EIAV Virus

- **Envelope:** SU, gp90, TM, gp45
- **Integrase-IN:** p30
- **Reverse Transcriptase-RT:** p66
- **Protease-PR:** p12
- **dUTPase-DU:** p15
- **ΔS2 EIAV_{D9}**

Viral RNA

Lipid Bilayer

Nucleocapsid-NC p11

Matrix-MA p15

Core-CA p26

Pol

Gag

Env
Typical Clinical Course of EIAV Infections

Disease episode: Rectal Temperature 39°C & Platelet/ml < 100,000
Similarities Between EIAV & HIV

- Transmitted via blood
- Macrophage/monocyte tropism
- Diverse Env quasispecies & antigenic heterogeneity
- Envelope architectural characteristics
 - Extensive glycosylation
 - Immune decoys

Similarities ⇒ significant to initial virus exposure:
 - Key factors most relevant to vaccine efficacy
Efficacy of Attenuated EIAV Vaccine Trials

<table>
<thead>
<tr>
<th>EIAV Vaccine strain/dose</th>
<th>Route</th>
<th>Plasma viral RNA levels (DOC)</th>
<th>Interval to Challenge (months)/dose</th>
<th>Protection from clinical disease (%)</th>
<th>Protection from detectable infection (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIAV<sub>D9</sub>/10<sup>5</sup></td>
<td>IM</td>
<td>10<sup>3</sup></td>
<td>6/LDME</td>
<td>8/8 (100%)</td>
<td>8/8 (100%)</td>
</tr>
<tr>
<td>EIAV<sub>D9</sub>/10<sup>5</sup></td>
<td>IV</td>
<td>10<sup>3</sup></td>
<td>6/LDME</td>
<td>8/8 (100%)</td>
<td>8/8 (100%)</td>
</tr>
<tr>
<td>EIAV<sub>D9</sub>/10<sup>5</sup> & 10<sup>3</sup></td>
<td>IM</td>
<td>10<sup>3</sup></td>
<td>6/LDME</td>
<td>12/12 (100%)</td>
<td>12/12 (100%)</td>
</tr>
<tr>
<td>EIAV<sub>D9</sub>/10<sup>6</sup></td>
<td>IV</td>
<td>10<sup>3</sup></td>
<td>6/3000 HID</td>
<td>3/3 (100%)</td>
<td>3/3 (100%)*</td>
</tr>
<tr>
<td>Control</td>
<td>NA</td>
<td>NA</td>
<td>LDME/3000 HID</td>
<td>0/16 (0%)</td>
<td>0/16 (0%)</td>
</tr>
</tbody>
</table>

*Plasma & Tissues
LDME, Low Dose Multiple Exposure
HID, Horse Infectious Doses
Working hypothesis:

Envelope is a primary determinant of viral pathogenesis & vaccine efficacy

Challenge Strains: Variant Envs in Identical Proviral Backbones
Development of Challenge Strains with Defined, Increasing Levels of Variation

Env (gp90): $\text{EIAV}_{\text{PV}} = \text{EIAV}_{\text{D9}}$

Env (gp90): $\text{EIAV}_{\text{UK3}} = \text{EIAV}_{\text{D9}}$

Divergence (%) from EIAVPV

I II III IV V VI Inapparent
30 50 230 260 645 740 1219 (DPI)
In Vitro Analyses: Replication Kinetics

Fetal Equine Kidney cell infections:

In Vivo Analyses: Clinical Disease

(4 Ponies/EV strain)

100%, Peak viral loads \(\sim 10^5 \text{ to } 10^7 \) cp RNA/ml

Replication Dynamics

Steady state viral loads \(\sim 10^4 \) cp RNA/ml

Immunogenicity/Serology (6MPI)

- Env-Spec Titer \(\sim 10^5 \)
- Avidity \(\sim 43\% \)
- Conformation Ratio \(\sim 1.1 \)
Challenge Strains were Neutralization Distinct

Experimentally-Infected Pony Sera

Virus Strain
- EV0
- EV6
- EV13

10^1 10^2 10^3

Challenge Strains were Neutralization Distinct
Immunization & Challenge

Inoculation (IM) EIAV_{D9}:
24 EIAV naïve ponies

10^3 TCID_{50} 10^3 TCID_{50}

Challenge (IV):
3 groups of 8 vaccinated 3 groups of 6 EIAV naïve (control) ponies

10^3 TCID_{50} EVO, EV6 or EV13

Monitor
- Clinical signs
- EIAV-specific antibody response
- EIAV-specific cellular response
- Plasma viral load

Monitor
- Clinical signs
- EIAV-specific antibody response
- EIAV-specific cellular response
- Plasma viral load
- RT PCR for WT Challenge
Protection from Clinical Disease

Days Post-Challenge

EV0
EV6
EV13

7/8
5/8
3/8

Protection from Clinical Disease
Inverse Correlation of Disease & Divergence

When \(Y \) (Protection) = 0, \(X \) (Divergence) = 23

\[R^2 = 0.998 \]
\[P = 0.02 \]
Conclusions

- Envelope variation alone dramatically affected protection from disease.
- Envelope gp90 variation had a significant inverse linear association with protection from disease.
- Envelope gp90 (SU) variation in the absence of gp45 (TM) variation is a critical determinant for vaccine efficacy.
- Ancestral envelope did not confer broad levels of protection.
 - 6% variation: protection dropped by 25%.
 - 13% variation: protection dropped by 50%.
Implications

- Minimal envelope variation can pose a major obstacle to lentiviral vaccine efficacy

- Ancestral envelopes as individual immunogens in our system will not confer protection against lentiviral quasispecies

- Multivariant immunogens?
- Consensus immunogens?
Acknowledgements

University of Pittsburgh
Ronald C. Montelaro, Ph.D.
Shannon Barnes, M.S.
Tara L. Tagmyer
Baoshan Zhang, Ph.D.
Jonathan D. Steckbeck, M.B.A.

University of Kentucky
Chuck J. Issel, D.V.M., Ph.D.
Sheila J. Cook

* Research Supported by
NIH/NIAID RO1AI025850-19