Comparative efficacy of Gag/Pol/Env vaccines derived from temporal isolates of SIVmne against cognate virus challenge

Shiu-Lok Hu
University of Washington
AIDS Vaccine 07
Seattle, 2007
Differential Phenotypes of Temporal Isolates of HIV

• Viruses isolated early during the asymptomatic phase, are typically macrophage-tropic, slow replicating, minimally cytopathic, and non-syncytium inducing: M-tropic, slow-low/NSI phenotype

• Viruses emerge later are often able to infect CD4⁺ T-cell lines, and replicate rapidly, cytopathic, and syncytium inducing: T-tropic, rapid-high/SI phenotype
Questions

• Do vaccines derived from early or late isolates induce qualitatively different immune responses?
• Do these responses show differential protection against early or late virus isolates?
Temporal Isolates of SIVmne

- Inoculum: SIVmne CL8 (molecular clone of E11S)
 - Slow replication kinetics
 - Macrophage tropic
 - Low cytopathicity
- Late (Wk 170) isolate: SIVmne 170
 - Rapid replication kinetics
 - Syncytium-forming
 - Highly cytopathic

Differential In Vivo Pathogenicity of Temporal Isolates of SIVmne

Kimata et al. Nat Med. 5:535-541, 1999
Preferential Transmission or Amplification of E11S-like Viruses After Intrarectal Inoculation

Inoculum

A

SIvMne uncloned virus

Inoculum

Intrarectal challenge (n=6)

93204

93205

93206

93191

93080

92175

Intravenous challenge (n=10)

91319

91320

91323

91324

92170

93032

92179

91064

91070

92168

PBMC cDNA isolated 2 wks after inoculation of naïve animals

Polacino et al. J. Virol. 73:3134-3146, 1999
Study Design

• Recombinant vaccinia virus priming (wk 0 and 8)
 – Each vaccinee receives two recombinants: one expressing Gag-Pol; the other, Env gp160
 – Two isolates: SIVmne CL8, or SIVmne 170
• A single booster immunization 10 or 12 mo later with the cognate recombinant proteins: Gag-Pol and Env
• N=16 vaccinees per arm; 16 naïve controls
• Four weeks after the booster immunization, animals were challenged intravenously with CL8, 170 or chimeric viruses between CL8 and 170, all at 20 50% animal-infectious doses (AID$_{50}$)
CL8 Vaccines Protected Against Homologous CL8 Virus Challenge

Mean Plasma Viral Load (vRNA eq/ml)

Challenge Virus: CL8

Weeks after Challenge

- CL8 Imm
- Cont CL8

p<0.004
CL8 Vaccines Failed to Protect Against SIVmne170 Challenge

Challenge Virus: CL8

![Graph showing mean plasma viral load (vRNA eq/ml) over weeks after challenge.](image)

Weeks after Challenge

p<0.004
170 Vaccines Failed to Protect Against Late Virus Challenge

Challenge Virus: CL8

Challenge Virus: 170 Wk

Weeks after Challenge

Mean Plasma Viral Load (vRNA eq/ml)

p<0.004
170 Vaccine Also Failed to Protect Against CL8 Challenge

Challenge Virus: CL8

Challenge Virus: 170 Wk

![Graph showing mean plasma viral load (vRNA eq/ml) across weeks after challenge.](image-url)

- **CL8 Imm**
- **170w Imm**
- **Cont CL8**

Weeks after Challenge:

- 0
- 4
- 8
- 12
- 16
- 20
- 24

Mean Plasma Viral Load (vRNA eq/ml): p<0.004
Chimeric Viruses Derived from Temporal Isolates of SIVmne

Persistent and High Viral Load Following Infection with CL8 and 170 Chimeras

- Challenge Virus: 170/8
- Challenge Virus: 8/170

Weeks after Challenge

Mean Plasma Viral Load (vRNA eq/ml)

- Cont CL8/170
- Cont 170/CL8
Chimeric Viruses Are Pathogenic In Vivo

Weeks after challenge

Mean CD4⁺ T cells/ul of blood
CL8 Vaccines Control Infection by Chimeric Viruses 170/8 and 8/170

Challenge Virus: 170/8

Challenge Virus: 8/170

Weeks after Challenge

Mean Plasma Viral Load (vRNA eq/ml)

p<0.001

p<0.001
170 Vaccine Failed to Protect Against Chimera with Env from the Late 170 Isolate

Challenge Virus: 170/8

Challenge Virus: 8/170

Weeks after Challenge

Mean Plasma Viral Load (vRNA eq/ml)
Partial Control of CL8 Env Chimera (170/8)
Infection by 170 Vaccines

Challenge Virus: 170/8

Challenge Virus: 8/170

Mean Plasma Viral Load (vRNA eq/ml)

Weeks after Challenge
SIV-Specific Antibody Response* to Prime-Boost Immunization with SIVmne CL8 or 170 Vaccines

*ELISA Antigen: SIVmne E11S
SIV-Specific IFN-γ⁺ T-cell Response* to SIVmne CL8 or 170 Vaccines on Day-of-Challenge

*Stimulating Antigen: AT-2 inactivated SIVmne E11S
Summary

• CL8 vaccines protected against CL8 challenge
• Not entirely because CL8 is “wimpy”: CL8 vaccines protected against 170/8 and 8/170 chimera, infection by which resulted in high and persistent plasma viral load
• Env-specific responses played a major role in protective immunity elicited by this vaccine regimen
• Neither CL8 nor 170 vaccine protected against the late isolate 170, possibly it represents escape variants
• Vaccines based on the late isolate 170 failed to protect against the homologous virus170, or even the “wimpy” virus CL8
Questions

• Vaccines: Are vaccines based on late HIV isolates relevant for protection against transmitted viruses?

• Model: Are challenge models based on late viral isolates relevant for vaccine evaluation?
Acknowledgments

University of Washington
 Patricia Firpo
 Brad Cleveland
 Igor Klots
 Jane Moon
 Jennifer McKenna
 Heather Mack
 Modou Mbowe
 Yongde Zhu
 Dave Anderson
 Kay Larsen
 Barbra Richardson

Fred Hutchinson Cancer Research Institute
 Julie Overbaugh

Baylor College of Medicine
 Jason Kimata

National Cancer Institute
 Raoul Benveniste

NIH R01 AI 047735