Vaccine-Induced Immunity in T-Cell Based Candidate HIV Vaccines

Julie McElrath
AIDS Vaccine 2008
Cape Town
In the Step Study, the MRKAd5 HIV-1 gag/pol/nef vaccine did not lower HIV-1 infection rates or post-infection plasma viremia.

HIV-1 incidence was higher in vaccine-treated than placebo-treated uncircumcised males with pre-existing adenovirus serotype 5 (Ad5) immunity.
What threshold immune response must future HIV vaccines elicit if T cell immunity is critical in vaccine-induced HIV protection?
Step Trial: After 3 immunizations with MRKAd5 HIV-1 gag/pol/nef vaccine, HIV-specific T cells were detected in 89%; response frequencies were similar to those in previous phase I trials.

<table>
<thead>
<tr>
<th>Protein</th>
<th>% (# positive/# tested)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>89.6% (206/230)</td>
</tr>
<tr>
<td>Gag</td>
<td>83.0% (191/230)</td>
</tr>
<tr>
<td>Pol</td>
<td>67.8% (156/230)</td>
</tr>
<tr>
<td>Nef</td>
<td>78.3% (180/230)</td>
</tr>
</tbody>
</table>

*analysis by IFN-γ ELISpot in PBMC at week 30 in stratified random sample
Step Trial: HIV-specific T cell responses
Case-cohort comparison study*

a. CD4+ T helper cells mounted in ~41% of vaccinees, median ~0.2% of circulating CD4+ cells, recognizing predominantly Gag epitopes,

no differences apparent between cases vs. non-cases

b. CD8+ T cells elicited in the majority of vaccinees, 0.5-0.8% of circulating CD8+ cells, magnitude and frequency greater in Ad5≤18 group,

no differences apparent between cases vs. non-cases

*male per-protocol cases, non-cases matched 2-4:1 by age, region, Ad5 titer, treatment
Magnitude of vaccine-induced CD4+ T cells in cases and non-cases 4 weeks after the second (week 8) or third (week 30) vaccination.
Magnitude of vaccine-induced CD8+ T cells in cases and non-cases 4 weeks after the second (week 8) or third (week 30) vaccination.
While the overall frequency of T cell responses was high, only 31% (CI: 24-41%) of vaccine recipients mounted both CD4+ and CD8+ HIV-specific T cell responses after three doses.
“Polyfunctional” CD4 and CD8 T cells elicited:
1) CD4+ T cells: IL-2+ predominated, majority secreted 2-3 cytokines
2) CD8+ T cells: IFN-γ (TNF) predominated, majority secreted 1-2 cytokines

no differences apparent between cases vs. non-cases

*Case-cohort study
Polyfunctional CD4+ T cell responses in cases and non-cases 4 weeks after the third (week 30) vaccination.
Polyfunctional CD4+ T cell responses in cases and non-cases 4 weeks after the third (week 30) vaccination

CD4+ T Cells
Did the MRKAd5 HIV-1 gag/pol/nef vaccine elicit sufficient magnitude and breadth of T cell responses?
HVTN 502: Comparison of CD8+ T Cell Responses Using Merck vs Global PTE Peptides (ICS), U.S. male vaccinees

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Merck</th>
<th>PTE-G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gag</td>
<td>19/39 (48.7%)</td>
<td>16/44 (36.4%)</td>
</tr>
<tr>
<td>Nef</td>
<td>20/39 (51.3%)</td>
<td>8/44 (18.2%)</td>
</tr>
<tr>
<td>Pol</td>
<td>24/39 (61.5%)</td>
<td>19/44 (43.2%)</td>
</tr>
</tbody>
</table>
Comparing CD8+ T cell responses using the same PTE-Global peptide panel (Gag, Pol and Nef) in the ICS assay, the median percentage of vaccine-induced CD8+ T cells in the Step study was 43% lower than in HIV-infected long-term non-progressors.
Prior Ad5 Immunity Impacts Breadth and Potency of HIV-specific T Cell Responses

IFN-secreting T cells from Ad5 naïve (58%) were more likely than Ad5 immune (34%) vaccinees to recognize epitopes within all 3 HIV proteins expressed in the vaccine (Gag, Pol and Nef).

There was a higher probability of CD8+ responders among the Ad5 naïve vaccinees than the Ad5 immune group (Odds ratio = 5.76; p=0.0006).

Gag response rates were significantly reduced in vaccinees with high baseline Ad5 titers.
Gag response rates were significantly reduced in vaccinees with high baseline Ad5 titers

Response rates:

- 14/19 (74%)
- 0/6 (0%)

p = 0.0026
Three preliminary findings in the Step trial cases suggest that a threshold CD8+ T cell response may be reached with a T-cell based vaccine that could reduce viremia.

D. Casimiro, S. Dubey, D. Mehrotra (Merck Research Labs)
N. Frahm, F. Li, D. Friedrich, D. Geraghty (HVTN Lab)
H. Janes, Z. Moodie, P. Gilbert, S. Self (HVTN/SCHARP)
(P08-10)
Three preliminary findings in Step trial cases suggest that a threshold CD8+ T cell response could be reached with a T-cell based vaccine that could reduce viremia

1) Level of IFN-γ-secreting T cells (total, Gag) correlate inversely with viral load in Ad5 naive vaccinees

2) Vaccinees with more Gag CD8+ T cells trend toward lower viral load (minipools, epitope mapping)

3) Beneficial effect of protective HLA alleles observed in HIV+ cohorts confirmed in Step Trial cases; this effect was more pronounced in vaccine recipients than in placebo recipients

(P08-10)
What immune function will most reliably provide indicators of vaccine-induced protection?

- control of HIV replication?
- memory phenotype?
- Cytokine/chemokine secretion?
Do vaccine-induced T cells have antiviral activities?

Viral Inhibition Assay Working Group

Jill Gilmour, Peter Hayes (IAVI)
Bruce Walker, Boris Juelg (Harvard)
Georgia Tomaras (Duke HVTN)
Otto Yang (UCLA)
Julie McElrath, Natalie Zheng (HVTN)
David Watkins (U Wisconsin)

Patricia D’Souza (DAIDS) and Holly Janes (SCHARP)
Viral inhibition assay method

PBMC

CD3/CD8 bispecific Ab

Activate

CD4 T cells

E:T = 5:1

CD8 T cells

log reduction of p24

HIV-specific CD8 T cells

non-specific CD8 T cells
At 6 months post boost, most vaccine-induced ex vivo CD8+ T cells express low-level granzyme B and little/no perforin. Many express low-level granzyme B, and are perforin$^{\text{negative}}$ or perforin$^{\text{lo}}$.
What additional antiviral, anti-inflammatory activities should we capture?

Approach: bead array, transcriptional arrays
In the Step Study, HIV-1 incidence was higher in vaccine-treated than placebo-treated males with pre-existing Ad5 immunity.
What are the kinetics of T cell activation following priming and boosting with candidate Ad5/HIV vaccines?
Short-lived peaks of activated cells appear after vaccination, and kinetics are accelerated after boosting.
Step Trial: Enhancement of HIV Infection

Immune Activation
Increase activated CCR5+ CD4+ T cells in high Ad5 group (week 30 and week 52), unrelated to treatment arm (vaccine vs. placebo)
Step Trial: Enhancement of HIV Infection

Ad5-specific T cell immune responses:

Vaccine recipients mount both CD4+ and CD8+ T cell responses, stronger in low Ad5 group

Lower CD4+ T cell response rates in cases in some subgroups

(*N Frahm, late-breaker presentation)

Possible migration to mucosal sites?
Evaluation of immune cell infiltration in mucosal HIV transmission sites in vaccine trials

Intestinal CCR5-staining cells

Florian Hladik
Perspectives

1) Further progress has been made in defining threshold responses for T-cell based vaccines

2) Potential insight for post-infection endpoints may be gained comparing vaccine- vs placebo-treated cases in <18 Ad5 subgroup
 • Next 6 months: completion of viral sequence analysis of transmitting isolate, epitope mapping to understand epitope breadth/coverage, associations with HLA class I, II and KIR

3) T cell specificities: number of epitopes recognized and coverage relative to circulating strains may be inadequate. Improved strategies to elicit these may be necessary: 1) protein-adjuvant prime, vector boost (R Seder, 0503-05, Wed pm); 2) heterologous prime boost: different vectors, or different inserts (L Corey, SP01-01, Tues pm)
Perspectives

Potency of response: unclear what is needed, NHP studies could lend insight

Ad5 vectors as currently constructed may not provide the “correct” memory response

Ad5 effect requires further exploration: dampening responses to HIV-1 transgene, potential migration of Ad5-specific T cells to mucosa, Ad5 persistence in the mucosa

Ad5 innate signatures: transcriptional profiles of activation may lead to altered vaccine response.
Acknowledgments

Innate Immunity CAVD
FHCRC
Erica Andersen-Nissen, Ph.D.
Greg Spies, Ph.D.
Larry Corey, M.D.
Mingchao Shen, Ph.D.
ISB
Dan Zak, Ph.D.
Alan Aderem, Ph.D.

Bill and Melinda Gates Foundation
Nina Russell, M.D.
Jose Esparza, M.D.
T Cell Responses to Ad5 Vector
Two Approaches

1. Ad5 Empty Vector: VRC and Merck

2. 1773 15-mers overlapping by 11 a.a. spanning the 11 proteins/ORFs

- Ad5 100K: 282 peptides
- Ad5 E2 DNA polymerase: 300 peptides
- Ad5 E2 pre-terminal protein: 186 peptides
- Ad5 E2 ssDNA binding protein: 146 peptides
- Ad5 E3 gp19K: 43 peptides
- Ad5E4 Orf6: 78 peptides
- Ad5 fiber: 161 peptides
- Ad5 hexon: 266 peptides
- Ad5 penton base: 159 peptides
- Ad5 pV: 100 peptides
- Ad5pVII: 52 peptides
Peak Gag-specific T cell responses in Ad5-naïve (≤18) compared to Ad5-immune (≥200) vaccinees

<table>
<thead>
<tr>
<th>Gag</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1α</td>
<td>0.06</td>
</tr>
<tr>
<td>IP-10</td>
<td>0.02</td>
</tr>
<tr>
<td>IL-15</td>
<td>0.09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gag</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-6</td>
<td>0.05</td>
</tr>
<tr>
<td>IL-8</td>
<td>0.03</td>
</tr>
<tr>
<td>IL-10</td>
<td>0.09</td>
</tr>
<tr>
<td>TGF-α</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Remaining analytes showed no appreciable difference between Ad5-immune and Ad5-naïve test groups.

Mean background-subtracted concentration of positive responders, two-tailed t-test.

Sam Pine
Intracellular Cytokine Analysis

<table>
<thead>
<tr>
<th>Laser</th>
<th>Channel</th>
<th>8-Color</th>
<th>10-Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Violet</td>
<td>V450</td>
<td>ViViD<sup>1</sup></td>
<td>CD57 (Alx 405)</td>
</tr>
<tr>
<td>407nm</td>
<td>V525</td>
<td></td>
<td>AViD<sup>2</sup></td>
</tr>
<tr>
<td>Blue</td>
<td>FITC</td>
<td>CD4</td>
<td>TNF-α</td>
</tr>
<tr>
<td>488nm</td>
<td>PerCP-Cy5.5</td>
<td>CD8</td>
<td>CD8</td>
</tr>
<tr>
<td>Green</td>
<td>PE</td>
<td>IL-2</td>
<td>IL-2</td>
</tr>
<tr>
<td>532nm</td>
<td>PE-Tx Rd</td>
<td>CD3</td>
<td>CD3</td>
</tr>
<tr>
<td>Red</td>
<td>PE-Cy7</td>
<td>IFN-γ</td>
<td>IFN-γ</td>
</tr>
<tr>
<td>633nm</td>
<td>Alexa 647</td>
<td>Perforin</td>
<td>Perforin</td>
</tr>
<tr>
<td></td>
<td>Alexa 700</td>
<td>TNF-α</td>
<td>Granzyme B</td>
</tr>
<tr>
<td></td>
<td>APC-H7</td>
<td></td>
<td>CD4</td>
</tr>
</tbody>
</table>

Assay (8, 10-color) validated for IL-2 and IFN-γ (Horton H, De Rosa S, J Immunol Methods, 2007)
How can vaccine-induced HIV-specific T cells provide protection against HIV infection and disease?
Providing vaccine-induced immune protection against HIV infection

Need rapid effector response at site of exposure

Vaccine group

Neutralizing Ab, (CD4+ help, CD8+ CTL)

Placebo group

HIV-1 RNA (plasma)

days → weeks → years

days → weeks → years
Providing protection against HIV disease

Need central memory T cells to maintain immunity and to efficiently expand to effector cells

**Diagram:*

- **Placebo group**
- **Vaccine group**

- Δ peak viremia
- Δ set point

Axes:
- Y-axis: HIV-1 RNA (plasma)
- X-axis: Time (days → weeks → years)
Magnitude of CD8+ T Cell Responses in Long Term Nonprogressors (PTE-Global Peptides)

<table>
<thead>
<tr>
<th>Pool</th>
<th>Env</th>
<th>Gag</th>
<th>Nef</th>
<th>Pol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4/14</td>
<td>5/15</td>
<td>15/15</td>
<td>10/14</td>
</tr>
<tr>
<td></td>
<td>28.6%</td>
<td>33.3%</td>
<td>100%</td>
<td>71.4%</td>
</tr>
<tr>
<td>2</td>
<td>4/15</td>
<td>11/15</td>
<td>10/14</td>
<td>10/14</td>
</tr>
<tr>
<td></td>
<td>26.7%</td>
<td>73.3%</td>
<td>71.4%</td>
<td>71.4%</td>
</tr>
<tr>
<td>3</td>
<td>5/15</td>
<td>10/14</td>
<td>10/14</td>
<td>7/14</td>
</tr>
<tr>
<td></td>
<td>33.3%</td>
<td>71.4%</td>
<td>71.4%</td>
<td>50%</td>
</tr>
</tbody>
</table>

% T Cells Producing IFN-γ⁺ or IL-2⁺

- Positive response
- Negative response