HIV-1 infection is characterised by early depletion of CD161+ CD4 cells and gradual decline in regulatory T cells

Andrew Prendergast, Julia Prado, Yu-Hoi Kang, Fabian Chen, Lynn Riddell, Graz Luzzi, Philip Goulder, Paul Klenerman

University of Oxford, UK
CD4 depletion is the hallmark of HIV infection
Naïve CD4 cell differentiation
Naïve CD4 cell differentiation
Naïve CD4 cell differentiation

Intracellular pathogens

IFN\(\gamma\) → Th1 → T Bet → IL-12 → Naïve CD4 → IL-4 → Th2 → GATA3 → Extracellular pathogens

- IL-4
- IL-5
- IL-13
- IL-25

Extracellular pathogens
Naïve CD4 cell differentiation

Intracellular pathogens
- IFNγ
- Th1
 - T Bet
 - IL-12

Extracellular pathogens
- IL-4
- IL-5
- IL-13
- IL-25

Th2
- GATA3
- IL-4

Differentiation
- IL-1β + IL-6 + IL-23

Th17
- ROR-γt
- IL-21

Amplification
- IL-23

Stabilisation
- DC

Th17
- IL-17A
- IL-17F
- IL-21
- IL-23

Bacteria
- Fungi
- Mycobacteria
Naïve CD4 cell differentiation

Intracellular pathogens

Treg
FoxP3

Naïve CD4

Immune regulation

IL-10 TGF-β

Th1

IFNγ

Tgfb

IL-12

Tbet

Differentiation

IL-1β + IL-6 + IL-23

RORγt

Th17

IL-21

Amplification

IL-23

Stabilisation

Th17

IL-17

IL-17A

IL-17F

IL-21

IL-23

DC

Extracellular pathogens

IL-4
IL-5
IL-13
IL-25

Th2

GATA3

Bacteria
Fungi
Mycobacteria
Preservation of Th17 cells in MALT of natural SIV hosts

Natural SIV hosts
- Preservation of Th17 cells
- No microbial translocation
- No immune activation

HIV-infected humans
- Profound CD4 depletion
- Loss of Th17 cells
- Microbial translocation
- Immune activation

Brenchley et al., Blood 2008; 112:2826-35.
Human interleukin 17-producing cells originate from a CD161⁺CD4⁺ T cell precursor

Lorenzo Cosmi,¹ Raffaele De Palma,⁴ Veronica Santarasci,¹ Laura Maggi,¹ Manuela Capone,¹ Francesca Frosali,¹ Gabriella Rodolico,⁵ Valentina Querci,¹ Gianfranco Abbate,¹ Roberta Angelì,¹ Liberato Berrino,⁵ Massimiliano Fambrini,² Marzia Caproni,⁶ Francesco Tonelli,³ Elena Lazzari,¹ Paola Parronchi,¹ Francesco Liotta,¹ Enrico Maggi,¹ Sergio Romagnani,¹ and Francesco Annunziato¹
CD4+CD25+ population capable of suppressing other effector cells

Prevention of autoimmunity

Immune homeostasis / self-tolerance

Tregs in HIV: no consensus

Accumulation
Inhibition of effector cells

Andersson *J Immunol* 2005
Cao, *AIDS Res Hum Ret* 2009
Weiss, *Blood* 2004

Depletion
Increase in immune activation

A poil, *JAIDS* 2005
Eggena, *J Immunol* 2005
Tregs in HIV: no consensus

Detrimental
Andersson, *J Immunol* 2005
Cao, *AIDS Res Hum Ret* 2009
Weiss, *Blood* 2004

Protective
Apoil, *JAIDS* 2005
Eggena, *J Immunol* 2005
Conference Summary

Regulatory T Cells (T_{reg}) and HIV/AIDS: Summary of the September 7–8, 2006 Workshop

CLAIRE A. CHOUGNET¹ and GENE M. SHEARER²

- Differences in patient characteristics
- Varying Treg definitions
- Data analysis
- Tissues vs blood
- Cross-sectional data
Aims of this study

• To investigate the impact of HIV on diverse CD4 subsets
 – Th17 cells
 – CD161+ cells
 – Tregs
Study subjects

- 77 HIV-infected
 - Chronic infection
 - Not on ART
 - Median CD4 470 (IQR 360-668)
 - Subset followed longitudinally

- 36 HIV-uninfected
Th17 cells

Fresh PBMC

4 hours

PMA / ionomycin
Brefeldin A

Stained for CD4
Permeabilised
Intracellular IL-17
Th17 cells are depleted ten-fold in peripheral blood in HIV infection

![Graph showing comparison between HIV uninfected and infected groups, with P<0.0001.]
Th17 cells are depleted ten-fold in peripheral blood in HIV infection.

![Graph showing depletion of Th17 cells in HIV infection](image)
Do Th17 cells contribute to the antiviral effector response?

PBMC isolated

CD4 cells selected

Beads CMV EBV Gag Pol Nef Negative

IL-17

IFN-γ
Viral-specific Th17 cells are not present in HIV-infected subjects.
CD161+ CD4 cells are depleted in HIV infection
Are Th17 cells preferentially infected with HIV?

Healthy donor PBMC isolated → CD4 cells selected → Cells activated for 48h

- Stimulated with PMA/IO
- FACS for p24 and IL-17 / IFN-γ

Cells infected with virus:
- Bal
- No virus

Cells infected after 5 days
Th17 cells can be infected with HIV
Th17 cells can be infected with HIV
Th17 cells can be infected with HIV
CD161+ CD4 cells express high levels of CCR5

![Graph showing expression levels of CCR5]
CD161+ CD4 cells can be infected with CCR5-tropic HIV
CD161+ CD4 cells can be infected with CCR5-tropic HIV
Summary

- Th17 cells depleted 10-fold in HIV-infected individuals
- Profound depletion even in subjects with high CD4 counts suggests early depletion
- Viral-specific Th17 cells not found
- CD161+ Th17 precursors depleted
- Th17 cells and CD161+ CD4 cells infected with HIV, but not preferentially
Definition of Tregs
Definition of Tregs

Healthy control

HIV-infected subject

CD3+CD4+CD25^{hi}FoxP3^+
Tregs are depleted in peripheral blood in HIV infection

P=0.08
Tregs are depleted in peripheral blood in HIV infection.
Tregs decline during disease progression in HIV infection

![Graph showing correlation between change in CD4 and change in Tregs]
Decline in Tregs is associated with increase in immune activation

\[R = -0.33 \]
\[P = 0.030 \]
Summary

• Tregs are depleted in HIV infection in both cross-sectional and longitudinal analysis

• Decline in Tregs is associated with increased immune activation
Conclusions

• Both Th17 cells and Tregs are depleted in HIV infection
• Loss of Th17 cells may enable mucosal translocation and immune activation
• Depletion of CD161+ CD4 cells may prevent Th17 reconstitution
• Tregs decline gradually during disease progression
• Loss of Tregs may enable immune activation to proceed unchecked
Acknowledgements

Julia Prado
Yu-Hoi Kang
Fabian Chen
Graz Luzzi
Lynn Riddell

Philip Boulder
Paul Kleeneman