Challenge Challenges: Considerations in the use of non-human primate models for studies of AIDS virus transmission and vaccine evaluation

J.D. Lifson,
AIDS and Cancer Virus Program,
SAIC Frederick, Inc.,
National Cancer Institute, Frederick, Frederick, MD
Overview

- NHP challenge models
- Recent developments in mucosal challenge models
- Impact of host factors
 - Protective MHC alleles
 - TRIM5α polymorphisms
- Current status and future developments
Why Non-human Primate Models for AIDS Vaccine Studies?

- Immunize and *challenge*!

- Experimentally defined infection parameters:
 - Infect with known virus with defined properties
 - Control timing, inoculum size, route

- Sample blood, tissues, at defined times relative to infection

- Interventions

- Proof of concept for novel vaccine approaches, comparative immunogenicity, basic questions relevant to vaccine development
Elements of a NHP Transmission/Vaccine Model

- Macaque species
- Challenge virus
- Challenge mode
 - Route
 - Dose
 - Single or repeat challenge(s)
Different Models

- Same Virus, Different Monkeys
- Different Virus, Same Monkeys
- Different Virus, Different Monkeys
- Same Virus, Same Monkeys, Different Challenge Route/Mode
- Same Name, Different Virus
Non-human Primate Models for AIDS Vaccine Studies

Monkeys

- Experimental ("non-natural") hosts
 - M. mulatta (*Rhesus*)
 - Indian, Chinese, Other
 - M. nemestrina (*Pigtail*)
 - M. fascicularis (*Cynomolgus, long tailed, crab eating*)
 - Mauritian cynos
Challenge Viruses for NHP Studies

Considerations:
- **Swarms vs. Clones**
- Production (transfection, infection, host cells)
- Homologous, heterologous

Viruses:
- **SIVs**: SIVmac 251, SIVmac239, SIVsmE660, SIVsmE543-3
- **Others**
- **SHIVs**: X4- SHIV89.6P (caveats), R5- SHIV 162P3/P4, SHIV AD8, SHIV1157 (Clade C “early”)
- **MANY OTHERS!**

Need for additional viruses...
Challenge Modes

Routes \textit{(cell free virus)}:

- Intravenous, intrarectal, intravaginal, penile, oropharyngeal/tonsillar

Dose:

- In vitro or in vivo titered, RNA, CA

Challenge number:

- Single, double, repeat
- Repeat titered mucosal challenges
THE ONE BEST SUITED TO ANSWER THE EXPERIMENTAL QUESTION OF INTEREST
Overview

- NHP challenge models
- Recent developments in mucosal challenge models
- Impact of host factors
 - Protective MHC alleles
 - TRIM5α polymorphisms
- Current status and future developments
Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection

Brandon F. Keele*, Elena E. Giorgi*, Jesus F. Salazar-Gonzalez*, Julie M. Deckert*, Kimmy T. Pham†, Maria G. Salazar†, Chuanxi Sun†, Truman Grayson†, Shuyi Wang†, Hui Li†, Xiping Wei†, Chunlai Jiang†, Jennifer L. Kirchhoff†, Feng Gao†, Jeffery A. Anderson†, Li-Hua Ping‡, Ronald Swanstrom‡, Georgia D. Tomaras‡, William A. Blattner‡, Paul A. Goepfert‡, J. Michael Kilby‡, Michael Saag§, Eric L. Delwart§, Michael P. Busch§, Myron S. Cohen§, David C. Montefiori§, Barton F. Haynes§, Brian Gaschen§, Gayathri S. Athreya‡, Ha Y. Lee‡, Natasha Wood‡, Cathal Seoige‡, Alan S. Perelson‡, Tanmoy Bhattacharya‡, Bette T. Korber‡, Beatrice H. Hahn‡, and George M. Shaw‡,§,nm

Department of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL 35223, *Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, ‡Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01002, §§Department of Medicine and Surgery, Duke University Medical Center, Durham, NC 27710, ‡‡Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, §§Department of Laboratory Medicine, University of California, San Francisco, CA 94115, ‡‡‡Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY 14627, ‡‡‡‡Institute of Infectionious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa, and Santa Fe Institute, Santa Fe, NM 87501

The precise identification of the HIV-1 envelope glycoprotein (Env) responsible for productive clinical infection could be instrumental in elucidating the molecular basis of HIV-1 transmission and in designing effective vaccines. Here, we developed a mathematical model of random viral evolution and, together with phylogenetic tree construction, used it to analyze 3,449 complete env sequences by single genome amplification from 102 subjects with early infection. Viral env genes evolving from founder viruses generally exhibited a star-like topology, whereas those which by bulk or near-limiting dilution PCR amplification of viral nucleic acid [provisional DNA or viral (v)RNA], followed by cloning, sequencing, and phylogenetic analysis (2–12). Alternatively, bulk amplification of viral nucleic acids were analyzed by heteroduplex tracking analysis (HTA) where only a small fraction of the gene of interest was interrogated by selective annealing of a short oligonucleotide to followed by differential migration of the heteroduplex (3–5). Although these approaches provide an approximation of the diversity of virus populations in acute and early infection, they have significant limitations. HTA, for example, does not pro...
HIV-1: Single virus infection with low diversity
HIV-1 subtype B / intrapatient diversity

Max. Diversity 15% Chronic Subtype B

Max. Diversity 1.6%
2 yrs infected

Max. Diversity 1.9%
4 yrs infected

Max. Diversity 3.2%
4 yrs infected

Max. Diversity 3.2%
6 yrs infected
Characterization of Challenge SIV Stocks

- Diversity between vaccine and challenge stocks: Representative of real world heterologous challenge, within/between clades?

- Diversity within stocks: Representative of within transmitter variation?
“Heterologous” challenge (251 vs. E660) is a good approximation of intrasubtype variation
Inoculum Diversity

“SIVmac251”

Max. Diversity 2.7%

“SIVsmE660”

Max. Diversity 1.8%
SIVmac251 diversity

- Tulane
 Max. Diversity 1.4%

- Ron Desrosiers
 Max. Diversity 2.3%
 SIVmac251-2000
 SIVmac251-2006

- Letvin/Barouch
 Max. Diversity 0.8%

- Chris Miller
 Max. Diversity 1.1%
Low-dose rectal inoculation of rhesus macaques by SIVsmE660 or SIVmac251 recapitulates human mucosal infection by HIV-1

Brandon F. Keele,1 Hui Li,1 Gerald H. Learn,1 Peter Hraber,2 Elena E. Giorgi,2,3 Truman Grayson,1 Chuanxi Sun,1 Yalu Chen,1 Wendy W. Yeh,4 Norman L. Letvin,4,5 John R. Mascola,5 Gary J. Nabel,5 Barton F. Haynes,6 Tanmoy Bhattacharya,2,7 Alan S. Perelson,2 Bette T. Korber,2,7 Beatrice H. Hahn,1 and George M. Shaw1

Low-Dose Mucosal Simian Immunodeficiency Virus Infection Restricts Early Replication Kinetics and Transmitted Virus Variants in Rhesus Monkeys†

Jinyan Liu,1§ Brandon F. Keele,3§ Hui Li,4 Sheila Keating,5 Philip J. Norris,5 Angela Carville,6 Keith G. Mansfield,6 Georgia D. Tomaras,7 Barton F. Haynes,7 Dror Kolodkin-Gal,2 Norman L. Letvin,2 Beatrice H. Hahn,4 George M. Shaw,4 Dan H. Barouch1,8,∗

†Present address: Vaccine Research1 and Viral Pathogenesis,2 Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215; National Institutes of Health, Frederick, Maryland 217023; University of Alabama at Birmingham, Birmingham, Alabama 35294; University of California, San Francisco, California 941185; and Emory University School of Medicine, Atlanta, Georgia 303226.
Intrarectal Titration with SIVmac251

1:100 dilution ir challenge

1:1000 dilution ir challenge

Liu et al. JVI Oct 2010
A Limited Number of Simian Immunodeficiency Virus (SIV) env Variants Are Transmitted to Rhesus Macaques Vaginally Inoculated with SIVmac251

Mars Stone, 1,2,3,\dag Brandon F. Keele, 3,\dag Zhong-Min Ma, 1,2 Elizabeth Bailes, 5 Joseph Dutra, 2 Beatrice H. Hahn, 3,4 George M. Shaw, 3,4 and Christopher J. Miller, 1,2,5

1 Center for Comparative Medicine and California National Primate Research Center, University of California, Davis, California 95616; 2 University of Alabama at Birmingham, Birmingham, Alabama 35294; and 3 Institute of Genetics, University of Nottingham, Nottingham NG7 2UH, United Kingdom
IVAG Infection with Single Variant \((10^3 \text{ TCID}_5) \)
IVAG Infection with Multiple Variants (\(10^5\) TCID\(_{50}\))
Min. number of unique transmitted lineages

- **Vaccinees median 1.5**
- **Control median 8**

- Tissue
- Plasma

Franchini, et al
LCM SGA Sequencing of Cervical SIV+ Foci

Section 1
Penile Infection with Single SIVmac251 Variant (10^5 TCID$_{50}$)

Miller, Keele, Lifson, et al
Overview

- NHP challenge models
- Recent developments in mucosal challenge models
- Impact of host factors
 - Protective MHC alleles
 - TRIM5α polymorphisms
- Current status and future developments
NOTES

The High-Frequency Major Histocompatibility Complex Class I Allele
Mamu-B^17^ Is Associated with Control of Simian Immunodeficiency
Virus SIVmac239 Replication

Levi J. Yant,\(^1,2\) Thomas C. Friedlich,\(^1\) Randall C. Johnson,\(^3\) Gemma E. May,\(^1\) Nicholas J. Maness,\(^1,2\) Alissa M. Enz,\(^1\) Jeffrey D. Lifson,\(^4\) David H. O'Connor,\(^1,2\) Mary Carrington,\(^3\) and David I. Watkins\(^1,2\)\(^*\)

\(^*\)Corresponding author. E-mail: david.watkins@admin.wisc.edu
Control of Chronic Phase SIVmac239 Viremia in Mamu B*08+ Rhesus Macaques

Overview

- NHP challenge models
- Recent developments in mucosal challenge models
- Impact of host factors
 - Protective MHC alleles
 - TRIM5α polymorphisms
- Current status and future developments
Intrinsic Susceptibility of Rhesus Macaque Peripheral CD4⁺ T Cells to Simian Immunodeficiency Virus In Vitro Is Predictive of In Vivo Viral Replication

SIMOY GOLDSTEIN,¹ CHARLES R. BROWN,¹ HOUMAN DEHGHANI,¹ JEFFREY D. LIFSON,² AND VANESSA M. HIRSCH¹*

Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville,¹ and Laboratory of Retroviral Pathogenesis, SAIC-Frederick, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick,² Maryland

Received 5 April 2000/Accepted 19 July 2000
The cytoplasmic body component
TRIM5α restricts HIV-1 infection
in Old World monkeys

Matthew Stremlau¹, Christopher M. Owens¹, Michel J. Perron¹,
Michael Kiessling¹, Patrick Auffissier² & Joseph Sodroski¹,²

¹Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute,
Department of Pathology, Division of AIDS, and ²Division of Viral Pathogenesis,
Beth Israel Deaconess Medical Center, Department of Medicine, Division of AIDS,
Harvard Medical School, Boston, Massachusetts 02115, USA
³Department of Immunology and Infectious Diseases, Harvard School of Public
Health, Boston, Massachusetts 02115, USA

Specific recognition and accelerated uncoating of
retroviral capsids by the TRIM5α restriction factor

Matthew Stremlau*, Michel Perron*, Mark Lee*, Yuan Li*, Byeongwoon Song*, Hassan Javanbakht*,
Felipe Diaz-Griffier*, Donovan J. Anderson†, Wesley I. Sundquist‡, and Joseph Sodroski*∥

*Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School Division of AIDS, Boston, MA 02115; †Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115; and ∥Department of Biochemistry, University of Utah.

Edited by John M. Coffin, Tufts University School of Medicine, Boston, MA, and approved January 19, 2006 (received for review November 22, 2005)
TRIM5α Modulates Immunodeficiency Virus Control in Rhesus Monkeys

So-Yon Lim¹, Thomas Rogers¹, Tiffany Chan¹, James B. Whitney¹, Jonghwa Kim², Joseph Sodroski², Norman L. Letvin¹*

¹ Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America, 2. Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America

TRIM5 Suppresses Cross-Species Transmission of a Primate Immunodeficiency Virus and Selects for Emergence of Resistant Variants in the New Species

Andrea Kirmaier¹,², Fan Wu³, Ruchi M. Newman⁴, Laura R. Hall¹, Jennifer S. Morgan¹, Shelby O’Connor⁵, Preston A. Marx⁶, Mareike Meythaler²,⁷, Simoy Goldstein³, Alicia Buckler-White³, Amitinder Kaur⁷, Vanessa M. Hirsch³, Welkin E. Johnson¹*

¹ Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America, 2. Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
Polymorphisms in Rhesus Macaque TRIM Coding Sequence

Impact of TRIM Polymorphisms on SIVsmE543-3 Infection

Differential Viral Restriction by Rhesus TRIM Alleles

Overview

- NHP challenge models
- Recent developments in mucosal challenge models
- Impact of host factors
 - Protective MHC alleles
 - TRIM5α polymorphisms
- Current status and future developments
NHP Challenge Models: Summary

- NHP models an invaluable component of basic and applied AIDS research
- Multiple NHP models available; understand options and pick model best matched to experimental question of interest
- Much progress, more authentic mucosal challenges possible with characterized challenge stocks; repeat titered mucosal challenge emerging as a standard; demanding
- Impact of host factors; identified and not yet identified
- Additional models needed and under development:
 - SIVs, R5 SHIVs, stHIVs
Acknowledgements/Collaborators

SAIC-F/NCI-F
B Keele
J Estes
M Piatak
J Smedley

NCI
G Franchini
M Vaccari

NIAID
V Hirsch
N Miller
J Warren

VRC
G Nabel
J Mascola

HMS/NENPRC
R Desrosiers
W Johnson

HMS/BIDMC
N Letvin
D Barouch

UCD/CNPRC
C Miller
M Stone
Z-M Ma

TU/TNPRC
P Marx
R Veazey

UAB
G Shaw
B Hahn
H Li

LANL
B Korber
A Perelson

Duke/CHAVI
B Haynes

ABL
R Pal
D Weiss

NCI/NIH Contract No. HHSN261200800001E