Electronic monitoring devices and SMS for adherence measurement and intervention in developing settings

Jessica Haberer, MD, MS
April 14, 2016
Funding statement

• I receive research funding from NIH, the Gates Foundation, and USAID
• I am/have been a paid consultant for IAVI, WHO, NIH, FHI 360, and Natera
• I partner with several wireless technology companies, but receive no financial support from them
Outline

- Why adherence matters
- Adherence measures
 - Electronic adherence monitoring devices
 - SMS (texting)
- Pros/cons of working with devices in developing settings
- Data on
 - Measurement of adherence
 - Intervention delivery, including differentiated care
 - Contextualization of adherence
Why adherence matters for HIV clinical trials

- 100% adherence: measured efficacy ~ true biological efficacy
- 60% adherence: measured efficacy ~ 50% true efficacy

(Weiss, Emerg Theme Epidem, 2008)
Adherence and efficacy in PrEP trials

Adherence is critical for PrEP efficacy

(with permission from J. Baeten)
Adherence measurement

• Subjective measures:
 – Self-report (in person or via SMS or computer/tablet)

• Objective measures:
 – Pills counts (announced and unannounced)
 – Pharmacy refill
 – Electronic adherence monitors
 – Drug levels (plasma, PBMC, RBC, hair)

• Reliable adherence measurement increases confidence in clinical trial results

• May guide optimal adherence intervention, including differentiated care and contextualization
Electronic adherence monitors
Electronic adherence monitors

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Likely most objective measure of behavior and best means for</td>
<td>• Curiosity openings and pocket doses</td>
</tr>
<tr>
<td>differentiated intervention</td>
<td>• Requires adherence to the adherence measurement</td>
</tr>
<tr>
<td>• Provides patterns of adherence</td>
<td>• Potential Hawthorne effect</td>
</tr>
<tr>
<td></td>
<td>• Cost</td>
</tr>
<tr>
<td></td>
<td>• Not compatible with pill boxes</td>
</tr>
<tr>
<td></td>
<td>• Potential for stigma</td>
</tr>
</tbody>
</table>

(Sabin, JAIDS, 2015; Orrell, JAIDS, 2015)
Real-time data

Pros: Real-time intervention

Cons: Battery life, cellular reception
Partners PrEP Study

• Phase III, randomized clinical trial of tenofovir and tenofovir/emtricitabine
• N=1,147 (24% of 4,747 in the overall trial)
• Adherence measured with:
 – Self-report
 – MEMS (medication event monitoring system)
 – Unannounced pill counts
 – Drug levels
• Counseling intervention triggered by <80% adherence (i.e., differentiated intervention)
Comparisons with plasma tenofovir

(Musinguzi, AIDS, 2016)
Wisepill Intervention Study

63 individuals initiating ART
All receive real-time adherence monitoring

<table>
<thead>
<tr>
<th>Months</th>
<th>Arm A (scheduled SMS + real-time monitoring)</th>
<th>Arm B (triggered SMS + real-time monitoring)</th>
<th>Control (real-time monitoring only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Daily SMS</td>
<td>SMS for missed doses</td>
<td>No SMS</td>
</tr>
<tr>
<td>2</td>
<td>Weekly SMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>SMS for missed doses</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>SMS for missed doses + social supporter notification (48 hr lapse)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>SMS for missed doses + social supporter notification (48 hr lapse)</td>
<td>SMS for missed doses + social supporter notification (48 hr lapse)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Haberer, AIDS, 2016)
Adherence improved with scheduled SMS

GEE regression analysis

<table>
<thead>
<tr>
<th></th>
<th>Study arm</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Scheduled SMS + real-time monitoring</td>
<td>Triggered SMS + real-time monitoring</td>
<td>Control (Real-time monitoring only)</td>
</tr>
<tr>
<td>Percent adherence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>92% (88-99)</td>
<td>84% (66-93)</td>
<td>90% (72-93)</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>91% (9)</td>
<td>79% (18)</td>
<td>79% (22)</td>
</tr>
<tr>
<td>Intervention effect (p-value)</td>
<td>11.1 (0.02)</td>
<td>-0.7 (0.90)</td>
<td>ref</td>
</tr>
</tbody>
</table>

Lapses in adherence

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>>48 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>4 (1-9)</td>
<td>8 (2-10)</td>
<td>4 (2-16)</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>7 (8)</td>
<td>11 (10)</td>
<td>11 (11)</td>
</tr>
<tr>
<td>Intervention effect (p-value)</td>
<td>0.6 (0.02)</td>
<td>1.0 (0.80)</td>
<td>ref</td>
</tr>
<tr>
<td></td>
<td>>96 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>1 (0-1)</td>
<td>2 (0-6)</td>
<td>2 (1-3)</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>1 (2)</td>
<td>3 (3)</td>
<td>4 (5)</td>
</tr>
<tr>
<td>Intervention effect (p-value)</td>
<td>0.3 (<0.001)</td>
<td>0.7 (0.23)</td>
<td>ref</td>
</tr>
</tbody>
</table>

- Findings similar after removing probable unmonitored time and adjusting for gender
- No benefit from social supporter intervention, likely due to limited resources and complex dynamics
MPYA

- Monitoring PrEP in Young Adult women
- N=314 young women in 2 Kenyan sites
- Next generation Wisepill device
- Randomization to SMS reminders (choice of daily or triggered)
- Weekly SMS for longitudinal assessment of behavior and risk to match with adherence (i.e., contextualization of adherence)
- Goal of understanding prevention-effective adherence (*Haberer et al, AIDS, 2015*)
SMS

Worldwide Mobile Subscriptions

Source: Strategy Analytics, Wireless Operator Strategies
SMS

Pros

- Convenient
- Frequent data collection
- Relative anonymity

Cons

- Still self-report
- “Can you hear me now?”
- Variable understanding of expected responses
- Literacy
- Shared phones
- Low battery, powered off
- Participant availability
- Cost

(Lester, Lancet, 2010; Pop-Eleches, AIDS, 2011)
Partners Demonstration Project

• Open-label study of integrated PrEP and ART among high-risk serodiscordant couples in East Africa
• Adherence measures via MEMS
• Sub-study: Partners Mobile Adherence to PrEP (PMAP)
• N= 393 (39% of 1,013 participants in project)
• Data used to define adherence in the context of HIV risk (i.e., prevention-effective adherence)
SMS surveys

<table>
<thead>
<tr>
<th>Enrollment</th>
<th>Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>PrEP given (1 mo)</td>
<td>PrEP given (3 mo)</td>
</tr>
<tr>
<td>Survey training period</td>
<td>SMS survey</td>
</tr>
</tbody>
</table>

- **SMS #1**: What is your password?
- **SMS #2**: Since this time yesterday, did you have sex? Enter 1 for ‘yes’ or 0 for ‘no’.
 ...
- **SMS #7**: Did you take your study pill since this time yesterday? Enter 1 for ‘yes’ or 0 for ‘no’.
- Survey incentivized at ~$0.50 for completion
Partners Demonstration Project

• Total 16,512 SMS surveys completed
 – Mean of 47 surveys/participant
 – Mean of 4.8 survey periods/participant
 – 66% of all surveys sent

• Prevention-effective adherence

• HIV risk: condomless sex and <6 months of ART
 – Reported on 21% of survey-days
 – Concurrent mean PrEP adherence was 85% (SD 28)
Sex with HIV-infected partner (N=5,342 surveys from 342 participants)

<6 months partner ART use (N=4,717 surveys [88%] from 333 participants)

HIV risk (N=1,130 surveys [21%] from 194 participants)

PrEP adherence = 85% (SD 28)

<100% condom use (N=1,305 surveys [24%] from 201 participants)
Partners Demonstration Project

• While ART use was <6 months, mean PrEP adherence
 – Lower for survey-days not reporting versus reporting sex (78% v 85%, p<0.001)
 – Similar for survey-days reporting versus not reporting condom use (87% v 85%, p=0.85)

 – Indicates better adherence with higher risk
Summary

• Electronic monitoring
 – Provides only assessment of day-to-day adherence behavior
 – Allows for differentiated intervention/care

• Real-time adherence monitoring
 – Allows for real-time adherence intervention and contextualization via SMS
Summary

• SMS
 – May be associated with more accurate self-report through decreased recall and social desirability bias
 – Allows for real-time adherence monitoring and intervention
 – Can provide contextualization
Acknowledgments

• David Bangsberg
• Lloyd Marshall/Wisepill Technologies
• Dimagi
• mSurvey
• Yo! Voice Solutions
• Funders
 – NIH: R34MH100940
 – Bill and Melinda Gates Foundation: OOP52516
Partners Demonstration Project Team

Investigators

– University of Washington Coordinating Center: Jared Baeten (protocol chair), Connie Celum (protocol co-chair), Deborah Donnell (protocol statistician), Renee Heffron (project director), Ruanne Barnabas, Bettina Shell-Duncan, ICRC Operations, Data and Administration teams
– Kabwohe, Uganda (KCRC): Elioda Tumwesigye, Steven Asiimwe, Edna Tindimwebwa
– Kampala, Uganda (Makerere University): Elly Katabira, Nulu Bulya
– Kisumu, Kenya (KEMRI): Elizabeth Bukusi, Josephine Odoyo
– Thika, Kenya (Kenyatta National Hospital, UW): Nelly Mugo, Kenneth Ngure
– MGH/Harvard: David Bangsberg, Jessica Haberer, Norma Ware
– Johns Hopkins: Craig Hendrix
– Fred Hutchinson Cancer Research Center: Dara Lehman
– DF/Net Research (data management)

Funders

– US National Institutes of Health (grants R01MH098744, R01MH095507, R01MH100940, R01MH101027, R21AI104449, K99HD076679)
– Bill & Melinda Gates Foundation (grants OPP47674, OPP1056051)

Research participants

The Partners Demonstration Project is made possible by the United States National Institutes of Health, the Bill and Melinda Gates Foundation, and the generous support of the American people through the United States Agency for International Development. The contents are the responsibility of the University of Washington and study partners and do not necessarily reflect the views of any of the study sponsors or the United States Government.
Questions?

jhaberer@mgh.harvard.edu