Heterologous Tier 1 R5 SHIV-C Challenges: Correlates of Protection

Enterprise Meeting:
“The Appropriate Use of Tiered Virus Panels when Assessing HIV-1 Vaccine-elicited Neutralizing Antibodies"

July 7th, 2016

Ruth M. Ruprecht, MD, PhD
Texas Biomedical Research Institute
Scientist, Department of Virology & Immunology
Southwest National Primate Research Center
Director, Texas Biomed AIDS Research Program
Topics

1. Paired tier 2 and tier 1 clade C SHIVs with exclusive R5 tropism

2. Orientation of V2 and access to the CD4 binding site

3. Correlates of protection:
 i. Anti-Env nAbs
 ii. Cell-mediated immunity
 iii. Protection-linked mimotopes
 iv. An unexpected humoral correlate of protection
Paired Tier 2 and Tier 1 R5-only SHIV-C Strains with HIV-1-like LTRs

- SHIV-1157i: parental infectious molecular clone (IMC); encodes env of Zambian infant 1157i; the parental SHIV-1157i was inoculated into a neonatal rhesus monkey (RM) that progressed to AIDS

- SHIV-1157ipd3N4, tier 2; pathogenic IMC\(^1,2\); encodes the “late” env cloned from this diseased RM 135 weeks post-infection\(^3\).

- SHIV-1157ipEL-p, tier 1, encodes the recently transmitted, “early” env version of the same env originally isolated from Zambian infant 1157i who became a long-term nonprogressor. The biological isolate, SHIV-1157ipEL-p, was generated after re-adaptation by rapid serial passage at peak viremia\(^4,5\).

Both SHIV-Cs have engineered LTRs with NF-kB site duplications (SIVmac239, the backbone for the SHIVs, has only 1 NF-kB site/LTR).

\(^1\)Song et al., J Virol 2006; \(^2\)Garcia et al., 2010; \(^3\)Humbert et al., Retrovirology 2008; \(^4\)Siddappa et al., PLoS One, 2010; \(^5\)Watkins et al., J Virol 2011
Flipping the V2 Position: Loss of Access to the CD4 Binding Site

Mauve early Env; Olive late Env
Recombinant Proteins as Immunogens

- In Incomplete Freund’s Adjuvant (IFA)

- Multigenic protein immunogens: SIV Gag-Pol (core) particles, HIV Tat, trimeric HIV1084i gp160 (tier 2)

 - **Group 1 (8 monkeys):**
 - Gag-Pol particles of SIVmne (differing from challenge virus)

 - **Group 2 (4 monkeys):**
 - Gag-Pol particles of SIVmac239 (identical to challenge virus)

- **Tier 1 challenge virus:** SHIV-1157ipEL-p (“early” env); 5x low-dose i.r. followed by 1X high-dose challenges

The primary HIV-Cs, HIV1084i and HIV1157i, were isolated from different infants of the same cohort of HIV+ mothers/infants in Lusaka, Zambia. Both viruses are recently transmitted isolates and represent HIV Env heterogeneity (22.1%) of different viruses circulating in the local community.

¹Lakhashe et al., *PLoS One*, 2011
SHIV-1157ipEL-p: env derived from long-term nonprogressor infant
SHIV-2873Nip: env derived from rapid progressor infant
Correlates of Protection

Neutralizing Ab titers (IC_{90}) as well as the sum of SIV Gag + HIV Tat IFN-γ ELISPOTs were significantly linked to lower tier 1 SHIV-C peak viremia.
Protection-linked mimotopopes
Protection-linked Biopanning to Identify Ab Epitopes Associated with Vaccine Success: No Bias

PL biopanning is independent of the mechanism(s) by which Abs protected the monkeys against virus challenges. There is also no \textit{a priori} bias toward any given Ab target.

\cite{Bachler2013}
An unexpected humoral correlate of protection
Sequence Alignment and Mimotope Location on HIV-1 Tat

A

<table>
<thead>
<tr>
<th>Biopanning #</th>
<th>Yield of Ab epitopes</th>
<th>Yield of mimotopes</th>
<th>Mimotope name</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Induced by vaccination (PL-biopanning)</td>
<td>Tat mimotopes isolated using RGe-11 (PL-Tat mime)</td>
<td>r-12-A7</td>
<td>S N T T M L L E P W K V Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>r-12-B5</td>
<td>H S L S P L E A W K T T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>r-12-C11</td>
<td>N S W M W L E P W K Y T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>r-12-D12</td>
<td>N M P Y M R M E P W K L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>r-12-F4</td>
<td>S N H Y Y F L E P W K A</td>
</tr>
<tr>
<td>II.</td>
<td>Induced by vaccination (conventional biopanning)</td>
<td>Tat mimotopes isolated using RA9 (RA9 Tat mime)</td>
<td>At1-2</td>
<td>W E P V D P R S Y - W N I</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>At1-A10</td>
<td>T S K L E P W K A W D H</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>At1-D3</td>
<td>Y T G P L E P W K K Q R</td>
</tr>
<tr>
<td>III.</td>
<td>Induced by exposure to first challenge virus</td>
<td></td>
<td>At-2-9</td>
<td>T Q A R A T L E P W K H</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>At-2-F7</td>
<td>A V - S L E P W K W N M S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>At-2-H4</td>
<td>E W P M W V L E P W K R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>At-2-D8</td>
<td>T S K L E P W K A W D H</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>At-2-E1</td>
<td>G T D M S Q M E P W K T</td>
</tr>
</tbody>
</table>

Shaded in grey: AA sequences identical to Tat immunogen (HIV-IIIB)

B

Summary: Lessons Learned from Tier 1 SHIV-C Challenges

Passive immunization\(^1-^3\)

- Complete cross-clade protection with an anti-V3 loop crown human IgG1 nmAb (HGN194)
- Significantly better immune exclusion by the dimeric IgA1 (dIgA1) version of the same anti-V3 loop crown nmAb than with the dIgA2 form; the dIgAs were given mucosally
- Strong synergy between the IgG1 form of HGN194, given intravenously at a suboptimal dose, and the intrarectally administered dIgA2 form, against intrarectal SHIV-C challenge

Active immunization: correlates of protection (significant lowering of peak viremia)\(^4,5\)

- Cell-mediated immune responses
- nAb titers (TZM-bl and PBMC assays)
- Abs targeting the neutralizing N-terminus of HIV-1 Tat, but not those against the full-length Tat protein, were significantly linked to lower SHIV-C peak viremia
- Serum IgG isolated from vaccinees neutralized Tat transactivation \textit{in vitro}
- A panel of protection-linked Env mimotopes

\(^1\)Watkins et al., \textit{PLoS ONE} 2011; \(^2\)Watkins et al., \textit{AIDS} 2013; \(^3\)Sholukh et al., \textit{Retrovirology} 2015; \(^4\)Lakhase et al., \textit{PLoS ONE} 2011; \(^5\)Bachler et al., \textit{J Virol} 2013
Acknowledgments

Texas Biomedical Research Institute
Samir Lakhashe
Hemant Vyas
Samson Adeniji

Dana-Farber Cancer Institute/Harvard Medical School
Barbara Bachler
Agnes Chenine
Michael Humbert
Robert Rasmussen
Nagadenahalli Siddappa
Ruijiang Song
Jennifer Watkins
Ricky Grisson
Victor Kramer
Helena Ong
Juan Diaz-Rodriguez
Claudia Ruprecht
Brisa Palikuqi
Wendy Wang
Klemens Wasserman
John Yoon
Sandra Lee

Yerkes National Primate Research Center/Emory University
Francois Villinger
James Else
Francis Novembre
Elizabeth Strobert
Harold McClure†

University of Nebraska
Charles Wood

University Teaching Hospital, Lusaka, Zambia
Ganapati Bhat†
Chipepo Kankasa

Humabs SAGL, Bellinzona, Switzerland
Davide Corti
Gloria Agatic
Fabrizia Vanzetta,
Siro Bianchi

Institute of Research in Biomedicine, Bellinzona, Switzerland
Antonio Lanzavecchia

Duke University
David Montefiori

University of Washington, Seattle
Shiu-Lok Hu
Patricia Polacino

Funding:
NIAID: HIVRAD P01 AI048240;
R37 AI034266;
R01 AI100703

NIDCR: R01 DE023049